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Abstract
The energy of an nth-gradient fluid depends on its Eulerian velocity gradients
of order n. A variational principle is introduced for the dynamics of nth-
gradient fluids and their properties are reviewed in the context of Noether’s
theorem. The stability properties of Craik–Criminale solutions for first and
second gradient fluids are examined.

PACS numbers: 46.05.+b, 46.15.Cc, 47.50.+d, 83.10.−y, 83.60.Wc

1. Introduction

Classical continuum theories lack any length scales and as such provide leading order
approximations for a number of problems that contain microstructures. Microstructures
typically introduce characteristic length scales that may induce gradient dependences of
various kinds. Several continuum theories have been developed to deal with microstructures
and their attendant phenomena. These include micropolar, micromorphic, strain-gradient,
non-local, etc; see Eringen [1] and Nowacki [2] for catalogues of such phenomenological
theories. Physical theories for complex fluids such as liquid crystals have also been introduced,
based on symmetry breaking phase transitions that yield statistically defined order parameters
as additional thermodynamic variables; see de Gennes and Prost [3] for discussions of
the fundamental principles of order parameter physics for liquid crystals. See Holm [4]
for a variational description of order parameter theories of complex fluids. Often these
phenomenological theories are combined with geometrical discussions based on the theory of
Cosserat and Cosserat [5].

The mathematical theory of continuum mechanics for complex or composite materials
produced a number of interesting phenomenological models in the 1960s. Among these are the
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models of differential type introduced by Rivlin and Ericksen [6] and the multipolar models
of Green and Rivlin [7, 8]. The history of how these models were tested in comparison
with experiments and refined by ab initio assumptions of thermodynamics is recounted, for
example, in Dunn and Fosdick [9], Eringen [1] and Fosdick and Rajagopal [10].

Recently, Bellout et al [11] considered a fusion of the models due to Rivlin and Ericksen
[6] and those of Green and Rivlin [7, 8]. The resulting theory introduced higher order spatial
velocity gradients into the energy that regularized the model solutions and endowed the model
with promising stability characteristics.

The present work specializes to a subclass of the Rivlin–Ericksen–Green multipolar fluids
treated in Bellout et al [11] that has energy density given by

1
2D|u|2 + DW(e,∇e,∇∇e, . . . ,D,∇D,∇∇D, . . .) (1)

where D is the mass density and e = 1
2 (∇u + ∇uT ) is the strain rate tensor. Materials whose

energy density takes this form are called gradient fluids of degree n, where n is the order of
the velocity gradients appearing in (1). The case n = 0 is the Euler fluid (no velocity gradient
dependence), while the case n = 1 coincides with the second grade fluid [9], whose energy
depends on the velocity gradient through the strain rate, e.

Our aim here is to investigate the implications of adopting a subclass of these nth-gradient
models for the well-known elliptic instability, which governs the rapid, violent transition
from two-dimensional to three-dimensional motion at the onset of turbulence in Newtonian
fluids [12–16]. We shall not assess the implications for experimental measurements of this
investigation, as we feel that such an assessment may still be premature. Instead, we continue
the investigation begun by Bellout et al [11] in studying the role of nth-gradient constitutive
relations on fluid instability. We begin by casting the nth-gradient theory of nonlinear elasticity
into the Euler–Poincaré variational framework [17]. The Euler–Poincaré framework allows
us to take advantage of several parallels between nth-gradient fluids and recently developed
Lagrangian-averaged Navier–Stokes-alpha, or LANS-α, turbulence closure models of Foias
et al [18]. Since Rivlin [19], remarkable parallels have been drawn between nonlinear
elasticity and turbulence closure models. In our case, the Euler–Poincaré framework leads to
energy balance laws, a proper definition of momentum density, circulation theorems and to
the Craik–Criminale (CC) class of exact solutions for the nth-gradient materials.

The CC solutions [20] form the basis for analysing elliptic instability, in which two-
dimensional flows with closed streamlines are subject to three-dimensional instabilities. Our
aim in this paper is to determine the effects of nth-gradient viscoelasticity on the parametric
resonance mechanism responsible for elliptic instability and on its growth rates. We follow
the earlier treatment of elliptic instability for Newtonian fluids as reviewd, e.g., by Kerswell
[16], and we are guided by the results of Fabijonas and Holm [21, 22] based on the CC
solutions for the LANS-α and similar closure models for turbulence. Thus, we consider
plane wave disturbances of elliptical flows whose wave amplitude and wave vector are
time dependent. This approach leads to a Floquet problem for the wave amplitude of the
disturbance. Remarkably, we discover that these viscoelastic effects may be either stabilizing
or destabilizing, in the sense that they alter the shape and size of the instability domain while
simultaneously increasing or decreasing the associated Lyapunov growth rates, depending on
the parameter values. We hope that experimentalists may be guided by these results in testing
whether nth-gradient models may be appropriate for the description of viscoelastic materials
undergoing elliptic instability.

The equations of motion for gradient fluids are obtained from the Eulerian form of
Hamilton’s principle introduced in [17] called the Euler–Poincaré theory for continua with
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advected quantities. In vector notation, this is
∂

∂t
m + u · ∇m + (∇u)T · m + m div u − ∇ δL

δD
= 0 where m ≡ δL

δu
. (2)

For the class of Lagrangians we shall consider, for zeroth, first and second gradient fluids, one
has

L =
∫

d3x

{
1

2
D|u|2 + Du · R(x) − p(D − 1) + DW(e,∇e)

}
. (3)

The term in R in this Lagrangian boosts the gradient fluid flow into a frame rotating with
angular frequency 2Ω = curl R, while the term in p imposes the constraint D = 1. Hence
∇ · u = 0, as implied by substituting D = 1 into the continuity equation,

∂tD + ∇ · (Du) = 0. (4)

Many mathematical regularity properties are available for the class of gradient fluids, especially
for the case that the Lagrangian L in (3) provides a norm (when evaluated on the constraint
surface, D = 1). However, these regularity properties for gradient fluids will be discussed
elsewhere, following Foias et al [23].

The objective of the current paper is to investigate the stability properties of CC solutions
of the gradient fluid equations. For CC solutions in an unbounded domain, the fluid velocity is
linear in the spatial coordinate and the pressure is quadratic. The CC solutions may be regarded
as the first term in a Taylor expansion in space, around a stagnation point of the gradient fluid
flow in a moving frame. We shall use the theory of elliptic instability to investigate the exact
nonlinear growth rates when CC solutions interact with a wave packet whose phase is frozen
into the CC flow for gradient fluids of degree n = 1, 2. (The Euler case n = 0 was studied
in the original work of Craik and Criminale [20]; see also Craik [24], Miyazaki [25] and
Kerswell [16] for subsequent developments. See also Lagnado and Simmen [26] and Goddard
and Alam [27] for similar analyses for an upper-convected Maxwell fluid and granular media,
respectively.)

Outline. Section 2 summarizes the properties of ideal gradient fluids that follow directly from
their Euler–Poincaré formulation. These properties include energy conservation, momentum
balance and Kelvin circulation preservation, all of which follow from Noether’s theorem. We
then specialize to gradient fluids of degree n = 1, 2. Section 3 introduces the CC solutions for
first and second gradient fluids. Section 4 discusses their stability properties for both inviscid
and viscous CC solutions. Here we introduce viscosity as in the theory of second grade fluids,
to which the gradient fluids reduce when n = 1. Section 5 summarizes our conclusions.

2. EP formulation of gradient fluids

Hamilton’s principle for first and second gradient fluids. The mathematical basis common to
all ideal fluid motions is Hamilton’s principle

δ

∫
L dt = 0 (5)

where L is the Lagrangian for the system. We work in the Eulerian representation of fluids,
where the Euler–Lagrange equation is replaced by the Euler–Poincaré equation; see [17] for
a detailed discussion of Euler–Poincaré theory.

This paper focuses on the incompressible motion of first and second gradient fluids in a
rotating frame. Thus, the class of Lagrangians we shall consider has the form [17]

L =
∫

L(u,∇u,∇∇u, . . . ,D,∇D,∇∇D, . . . ; R(x)) d3x (6)
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where R(x) is the vector potential for the Coriolis parameter, i.e., curl R = 2Ω. Specifically,
we shall take

L =
∫

d3x

{
1

2
D|u|2 + Du · R(x) − p(D − 1) + DW(e,∇e)

}
. (7)

Here p is pressure (a Lagrange multiplier), D is mass density, and u is fluid velocity. Through
the function W(e,∇e), the first and second gradient fluids depend on e, the symmetric strain
rate tensor,

eij = 1

2
(ui,j + uj,i) = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (8)

That is, first and second gradient fluids allow energy to depend upon strain rate e and gradient
of strain rate ∇e, respectively, [1, 9, 10]. The higher gradient fluids will allow energies that
depend upon higher order gradients of strain rate. We introduced the dependence on e,∇e,
etc, instead of ∇u,∇∇u, etc, in equation (7), so that the Lagrangian L will be invariant
under rotations. Consequently, the resulting Euler–Poincaré equations will admit an angular
momentum balance relation and will satisfy the requirements of material frame indifference.

Variational derivatives and natural boundary conditions. The variational derivatives of the
Lagrangian (7) for first and second gradient fluids are given by

δL =
∫

d3x

{
D(u + R) · δu +

(
1

2
|u|2 + u · R + W − p

)
δD − (D − 1)δp + σ : δe

}
(9)

where σ : δe = Tr(σT · δe) = σ ij δeij , and we sum over repeated indices. The quantity σ is
the stress tensor, whose definition assures that it is symmetric, σT = σ,

σ ij ≡ δL

δeij

= D
∂W

∂eij

− ∇ · D
∂W

∂∇eij

. (10)

The added natural boundary condition for second gradient fluids,

n̂ · ∂W

∂∇eij

δeij = 0 (11)

arises from an integration by parts. Another application of integration by parts and use of the
symmetry of eij gives

δL =
∫

d3x

{
D(u + R − ∇ ·σ) · δu +

(
1

2
|u|2 + u · R + W − p

)
δD − (D − 1)δp

}
(12)

where (∇ ·σ)i = ∂σ ij /∂xj . Another natural boundary condition has been introduced and
applied,

n̂ · σ · δu = 0 at the boundary. (13)

This condition may be satisfied when the fluid velocity has no normal component at the
boundary, by requiring that the normal stress has no tangential component,

(n̂ · σ) × n̂ = 0 at the boundary. (14)

The Euler–Poincaré motion equation. The Euler–Poincaré motion equation is [17]
∂

∂t
m + u · ∇m + (∇u)T · m + m div u − ∇ δL

δD
= 0 where m ≡ δL

δu
. (15)

The momentum density m is defined as the variational derivative of the Lagrangian with
respect to the fluid velocity u. For the gradient fluid Lagrangian (7), we see from (12) that this
is

m ≡ δL

δu
= D(u + R − ∇ ·σ). (16)



EP formulation of nth-gradient fluids 7613

We denote (∇u)T · m = mj∇uj , and d/dt = ∂/∂t + u · ∇ is the material derivative
along u. The incompressibility condition ∇ · u = 0 follows from the continuity equation
∂tD+∇·(Du) = 0, evaluated for D = 1, as imposed by the pressure constraint. Consequently,
the Euler–Poincaré motion equation (15) obtained from the gradient fluid Lagrangian (7) is
expressed as

d

dt
(u + R − ∇ · σ) + (∇u)T · (u + R − ∇ · σ) + ∇

(
p − 1

2
|u|2 − W − u · R

)
= 0 (17)

together with ∇ · u = 0. Next, we use the vector identity

(u · ∇)R + (∇u)T · R = −u × curl R + ∇(u · R)

together with the Coriolis relation curl R = 2Ω(x), and introduce the standard dissipation law
for the first and second gradient fluids. Consequently, the motion equation takes the familiar
form,
d

dt
(u − ∇ ·σ) + (∇u)T · (u − ∇ · σ) + 2Ω × u + ∇

(
p − 1

2
|u|2 − W

)
= ν�u. (18)

2.1. Circulation theorem and energy–momentum conservation

Kelvin–Noether circulation theorem. In the absence of forcing and dissipation, the Euler–
Poincaré theory for Lagrangians in the class (6) provides a Kelvin–Noether circulation theorem
[17]

d

dt

∮
c(u)

1

D

δL

δu
· dx = 0 (19)

which holds for integrations around any closed curve c(u) moving with the fluid. For the first
and second gradient fluids considered here, this becomes

d

dt

∮
c(u)

(u − ∇ · σ + R(x)) · dx = 0. (20)

Stokes theorem then provides, for relative vorticity ω = curl u, that
d

dt

∫
S(t)

(ω − curl(∇ · σ) + 2Ω(x)) · dS = 0 (21)

for any surface S(t) whose boundary ∂S(u) moves with the fluid. Consequently, we find
the Helmholtz vortex dynamics equation for the total vorticity, in the absence of forcing and
dissipation, as
∂

∂t
Σ + u · ∇Σ − Σ ·∇u = 0 where Σ = ω − curl(∇ · σ) + 2Ω(x). (22)

Thus, the Kelvin–Noether circulation theorem in the Euler–Poincaré framework implies that
the total vorticity Σ is frozen into the flow of a non-Newtonian, first or second gradient fluid.
Hence, its total vorticity Σ satisfies the Helmholtz vortex dynamics equation (22).

Energy conservation. From the Euler–Poincaré theory, one may compute the Hamiltonian
from the Lagrangian L in equation (7) for first and second gradient fluids in a rotating frame
by applying the Legendre transformation4,

H = 〈m, u〉 − L

=
∫ ∫

d3x

{
1

2
D|u|2 + σ : e − DW(e,∇e) + p(D − 1)

}
−

∮
n̂ ·σ · u dS. (23)

4 Actually, we compute only the Routhian; because we do not Legendre transform the pressure; and we do not
complete the transformation to explicit dependence only on m.
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The corresponding conserved energy is found by evaluating this expression on the constraint
manifold, D = 1, as

E =
∫ ∫

d3x

{
1

2
|u|2 + σ : e − W(e,∇e)

}
−

∮
n̂ · σ · u dS. (24)

The surface integrals in the last two equations vanish, upon applying the normal-stress
boundary condition (14), for the situation in which the velocity u on the surface has no
normal component. As a consequence, the inner product of the fluid velocity u with the
motion equation (18) yields

dE

dt
= −ν

∫
|∇u|2 d3x +

ν

2

∮
n̂ ·∇|u|2 dS. (25)

The surface integral vanishes, in this energy balance relation for first and second gradient
fluids in a rotating frame, provided u vanishes on the boundary.

Momentum conservation. We express the Euler–Poincaré equation (15) in components as

∂

∂t

δL

δui
+

∂

∂xj

(
δL

δui
uj

)
+

δL

δuj
∂iu

j − D∂i

δL

δD
= 0. (26)

Observe that for a gradient fluid Lagrangian (6) given by

L =
∫

L(u,∇u,∇∇u, . . . ,D,∇D,∇∇D, . . .) d3x

we have variational derivatives

δL

δD
= ∂L

∂D
− ∂

∂xl

∂L
∂D,l

+
∂2

∂xl∂xm

∂L
∂D,lm

− + · · ·
(27)

δL

δui
= ∂L

∂ui
− ∂

∂xj

∂L
∂ui

,j

+
∂2

∂xj∂xl

∂L
∂ui

,j l

− + · · ·

where the − + · · · refer to any dependence of the Lagrangian density L on higher spatial
derivatives of D and u. Therefore, upon performing the indicated differentiations by parts,
one eventually finds the local conservation law for momentum,

∂tmi = − ∂

∂xj
T

j

i with momentum density mi ≡ δL

δui
(28)

and momentum–stress tensor T
j

i defined by

T
j

i = miu
j +

(
L − D

δL

δD

)
δ

j

i −
(

δL

δuk
,j

uk
,i +

δL

δuk
,j l

uk
,li +

δL

δuk
,j lm

uk
,lmi + · · ·

)
. (29)

Here we abbreviate, by using variational-derivative notation, to denote

δL

δuk
,j

= ∂L
∂uk

,j

− ∂

∂xl

∂L
∂uk

,j l

+
∂2

∂xl∂xm

∂L
∂uk

,j lm

− + · · ·

δL

δuk
,j l

= ∂L
∂uk

,j l

− ∂

∂xm

∂L
∂uk

,j lm

+
∂2

∂xm∂xn

∂L
∂uk

,j lmn

− + · · · (30)

δL

δuk
,j lm

= ∂L
∂uk

,j lm

− ∂

∂xn

∂L
∂uk

,j lmn

+
∂2

∂xn∂xp

∂L
∂uk

,j lmnp

− + · · · .

The momentum conservation form (28) is guaranteed by the Euler–Poincaré equation
for any choice of Lagrangian that does not depend explicitly on the spatial coordinate. The
Coriolis vector potential R(x) introduces explicit spatial dependence into the Lagrangian.
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Consequently, although not all components of the momentum will be conserved, we may still
write the motion equation (18) as a momentum balance relation,

∂tmi = − ∂

∂xj
T

j

i + ν�ui + εijku
j 2�k (31)

where the momentum–stress tensor T
j

i is given by (29) and εijk is the completely antisymmetric
tensor density, with ε123 = 1.

Equations (27) for the momentum density mi and (29) for the momentum–stress tensor T
j

i

indicate how the derivation and analysis may proceed within the Euler–Poincaré framework
for gradient fluids of degree 3, 4, 5, etc. These generalizations correspond to allowing the
strain rate W in the Lagrangian (7) to depend on higher gradients of the strain rate e. Pursuing
this direction further for nth degree gradient fluids is straightforward within the Euler–Poincaré
framework. However, the present paper stops at second degree gradient fluids.

Choice of energy density W(e,∇e) for first and second gradient fluids. In this paper, we will
examine elliptic instability via exact nonlinear Craik–Criminale (CC) solutions for specific
cases that apply for first and second gradient fluids. For this study, we shall choose the strain
rate dependence in the potential energy density as a norm,

W(e,∇e) = 1
2α1|e|2 + 1

2α2|∇e|2 (32)

where |e|2 = eij eij and |∇e|2 = eij,keij,k in tensor notation; see also [11] for a discussion
of the role of this norm in proving the regularity properties of their Rivlin–Ericksen–Green
multipolar fluids. The case α2 = 0, α1 �= 0 corresponds to the equations for second gradient
fluids, and α1 = 0, α2 = 0 corresponds to the classic NS equations. For the choice in (32), we
have

∇ · σ = α1�u − α2�
2u. (33)

Upon defining v = (1 − α1� + α2�
2)u, the motion equation (18) takes the following form:

∂tv + (u · ∇)v + (∇u)T · v + 2Ω × u − ν�u

+ ∇(
p − 1

2 |u|2 − 1
2α1|e|2 − 1

2α2|∇e|2) = 0. (34)

For this choice of the energy density, the stress tensor in (29) has the form

T
j

i = miuj + pδij − (
α1ekjuk,i + 1

2α2(ejk,l + ekl,j )uk,li

)
= uiuj + pδij − α1(eil,luj + ekjuk,i) + α2

(
eil,lmmuj − 1

2 (ejk,l + ekl,j )uk,li

)
.

Note that this stress tensor is not symmetric. The Lagrangian in (7) is also not invariant under
rotations, when the Coriolis vector potential R(x) is a fixed vector. In the absence of R(x),
this Lagrangian regains invariance under rotations and the angular momentum in that case is
conserved. However, the stress tensor in that case is still not symmetric.

3. CC class of solutions for gradient fluids

A solution to (34) on an unbounded domain may be obtained, by taking velocity in the linear
form, u0 = S(t) ·x + U(t) together with a pressure p0, which is quadratic in space. The matrix
S is a time-dependent matrix such that

Ṡij + SimSmj + 2εimk�mSkj = Mij Sii = 0 (35)

and U(t) is the instantaneous velocity field at the origin. Here, M is a symmetric matrix
defined as Mij = −∂i∂jP, where

P = −
∫ x

F · dx + p0(x, t) + (U̇ + S · U + 2Ω × U) · x. (36)
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A typical approach is to choose a matrix S for which the left-hand side of (35) is
symmetric. Then, the corresponding pressure p0(x, t) is determined a posteriori by (36). We
nondimensionalize the system using the variables x′ = x/l, t ′ = ωt, u′ = u/|ω|l, v′ = v/|ω|l,
α′

1 = α1/l, α′
2 = α2/l2, where l is a typical length scale and ω = curl u0. The resulting

equation with the prime notation suppressed is (34) with ν replaced by ν/|ω|.
We construct a second solution to (34) of the form u0 + u1 with corresponding pressure

p0 +p1. We refer to u0 as the ‘base’ flow and u1 as the ‘disturbance.’ The equations governing
the disturbance are

∂tv1 + u0 · ∇v1 + u1 · v1 + (∇u0)
T · v1 + (∇u1)

T · v1 + Π × u1

+ ∇(
p1 − u1 · (∇ · σ) − 1

2 |u1|2 − α1(e0)ij (e1)ij − 1
2α1|e1|2

−α2(e0)ij,k(e1)ij,k − 1
2α2|∇e1|2

) = ν�u1 (37)

with ∇ · u1 = 0, in which we mix tensor and vector notation, where vi = (1 − α1� + α2�
2)ui

and ei = 1
2 (∇ui + (∇ui )

T ) for i = 0, 1, and Π = 2Ω + curl v0. In the above equation, we
have used the fact that u0 is an exact solution to (34) together with the vector identity

u · ∇v + (∇u)T · v = curl (v) × u + ∇(u · v) (38)

for any two vectors u, v. We choose the disturbance to be of the form

u1 = µa(t) sin(βψ(x, t)) (39)

p1 = µp̂11(t) cos(βψ(x, t)) + µ2p̂12(t) cos2(βψ(x, t)) (40)

ψ(x, t) = k(t) · x + δ(t), and µ and β are scaling factors so that we can choose the initial
conditions |a(0)| = 1 and |k(0)| = 1. The unknown phase ψ(x, t) and the amplitudes
a(t), p̂11(t) and p̂12(t) are to be determined. The incompressibility condition ∇ · u1 = 0 gives

a · k = 0. (41)

From this equation it follows that the nonlinear term u1 · v1 in (37) vanishes exactly. Thus, in
what follows, the sum u0 + u1 is an exact solution to the nonlinear equations of motion in (34).
By collecting on powers of sin(βψ) and cos(βψ), the evolution equations for the amplitudes
and phase are

p12 − (ϒ − 1)|a|2 + 1
2β2|a|2|k|2(α1 − α2|k|2β2) = 0 (42)

∂tψ + (S · x + U) · k = 0 (43)

dt (ϒa) + ϒST · a + Π × a − βP̃ k = −Eω|k|2a. (44)

Here ,

ϒ(t) = 1 + α1β
2|k(t)|2 + α2β

4|k(t)|4 (45)

Eω = νβ2/|ω| is the vorticity-based Ekman number, Π = curl u0 + 2Ω is the total vorticity
of the system, and P̃ = p11 − 1

2β2α1a · (S + ST ) · k. Note that the amplitude scaling µ is
immaterial. Without loss of generality, we set

dt δ + k · U = 0. (46)

Then taking the gradient of (43) it becomes

dtk + ST · k = 0. (47)
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We eliminate the pressure term by taking the dot product of (44) with k and by using
da/dt · k = −a · dk/dt = (S · a) · k, the first of which follows from (41) and the second
from (47):

βP̃ = 1

|k|2 {ϒ[(S + ST ) · a] · k + Π × a · k}. (48)

In summary, we have obtained a new exact incompressible solution to (34). The variables are
amplitude a(t) and wave vector k(t). Once these are determined, the pressure terms follow
from (42) and (48). Note that u0 and u0 + u1 are exact solutions to the nonlinear equations, but
u1 by itself is only a solution to (34) linearized about u0. The exception is that in a rotating
coordinate system (Ω �= 0), u1 is an exact solution by itself since this scenario corresponds
to u0 = R · x in a non-rotating frame, where R is rigid body rotation about the z-axis;
cf [28]. We emphasize that the operator dt + ST acting on a vector represents the complete
time derivative of that quantity in a Lagrangian frame moving with u0. Finally, the equation
for a(t) is5

dta = 1

ϒ
{2β2(S · k) · k(α1 + 2α2β

2|k|2)a − ϒST · a − Π × a + P̃ k − Eω|k|2a}. (49)

4. Elliptic instability for gradient fluids

We examine the stability of a rotating column of fluid with elliptic streamlines whose foci lie
on the y-axis:

u0 = 1
2ωL · x L =


 0 −1 + γ 0

1 + γ 0 0
0 0 0


 . (50)

Here, 0 � γ < 1 is the eccentricity of the ellipses, and the pressure is p0 = 1
2ω2(1 − γ 2)(x2 +

y2). Equation (47) with S = L is analytically solvable:

k = [
sin θ cos

(
t
√

1 − γ 2
)
, κ sin θ sin

(
t
√

1 − γ 2
)
, cos θ

]T
(51)

where κ2 = (1 − γ )/(1 + γ ) and θ is the polar angle that k makes with the axis of rotation.
Equation (49) has the form

dta = N (t;α1, α2, Eω,�, γ, θ) · a

where the elements of the matrix N are periodic with period τ = 2π/
√

1 − γ 2, the period
of k(t). Therefore, the system can be analysed numerically using Floquet theory [29]. We
compute the monodromy matrix P , that is, the fundamental solution matrix with identity
initial condition evaluated at t = τ . Equation (44) will have exponentially growing solutions
if maxi |�(ρi)| > 1, where ρi, i = 1, 2, 3 are the eigenvalues of P , with corresponding
Lyapunov-like growth rates given by

σ = ln{max
i

|�(ρi)|}/τ.
Thus, we can simulate numerically the solution to (44) over one period and indisputably
determine the exponential growth rates. We can be certain that at least one of the eigenvalues
will always be unity because of the incompressibility condition (41) and that the remaining
two eigenvalues appear as complex conjugates on the unit circle or as real valued reciprocals
of each other.
5 Alternatively, one can collect on the terms linear and constant in x upon insertion of u0 + u1 into (34). In either
case, by enforcing (46), both methods yield the same set of equations: (42), (47)–(49).



7618 B R Fabijonas and D D Holm

4.1. Inviscid results for gradient fluids

For flows with circular streamlines (γ = 0), the monodromy matrix can be analytically
computed. It follows from (51) that |k(t)| = 1. Then, ϒ is constant in time (denoted by
ϒ0 = 1 + α1β

2 + α2β
4) and (44) has three linearly independent solutions:

a1(t) = cos(ξ(t) + φ)k⊥1 + sin(ξ(t) + φ)k⊥2 (52)

a2(t) = sin(ξ(t) + φ)k⊥1 − cos(ξ(t) + φ)k⊥2 (53)

a3(t) = êz (54)

where ξ(t) = 2t (1 + �) cos θ/ϒ0, k⊥1 = [cos θ cos t, cos θ sin t,− sin θ ]T and k⊥2 =
[sin t,− cos t, 0]T are vectors orthogonal to k, and φ is an arbitrary phase. Clearly the
first two solutions a1 and a2 satisfy (41). The monodromy matrix can be constructed from
these three solutions:

P =

 cos(ξ(2π)) cos θ sin(ξ(2π)) 0

−sin(ξ(2π))/cos θ cos(ξ(2π)) 0
tan θ(1 − cos(ξ(2π))) − sin θ sin(ξ(2π)) 1


 .

The three eigenvalues are ρ1,2 = exp(±iξ(2π)), ρ3 = 1. All of the eigenvalues lie on the
unit circle, from which it follows that all solutions in the inviscid case for γ = 0 are stable.
The values of cos θ for which |ρi | = 1, i = 1, 2, 3 are called ‘critically stable’ and are given
by ξ(2π) = mπ,m = 0,±1,±2, . . .. At these parameter values an exponentially growing
solution can appear (together with an exponentially decaying one) as γ increases from zero.
Bayly [13] argues that the evenness of P̃ k as a function of k implies that the eigenvalues, if
real and unequal, must be positive. This dismisses the odd choices of m. Furthermore, Floquet
theory is not applicable for the case m = 0. Thus, the possible choices for critical stability are
ξ(2π) = 2nπ, n = ±1,±2, . . .. This corresponds to

cos θ = nϒ0

2(1 + �)
. (55)

These are the critical parameter values at which a(t) suffers exponential growth as γ increases
from zero. For the NS equations (i.e. ϒ0 = 1), only the n = 1 choice (called the ‘principle
finger’) is physically interesting. The other choices of n are extremely thin fingers with growth
rates ten orders of magnitude smaller than that of the principle finger [22]. As α1 and/or
α2 increase from zero, however, the fingers widen and the associated growth rate increases.
Finally, since |cos θ | � 1, we conclude that there exists a band of stable eccentricities for

− ϒ0

2
< � + 1 <

ϒ0

2
. (56)

Additional understanding of this result emerges by following the analysis of Waleffe [15]
and Kerswell [16]. By taking the dot product of (44) with a, we obtain (for all γ and ϒ)

d
(

1
2 |a|2)
dt

= −2γ a1a2 +
4γ (ϒ − 1)

ϒ

k1k2

|k|2 |a|2. (57)

One can determine an exponential growth rate to leading order in γ by inserting the zeroth-
order solutions for k and a1 into the right-hand side of this equation:
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Figure 1. Sample contour plots of instability regimes for α1 = 0.5, α2 = 0.3, β = 1.0, Eω = 0
computed on a 250 × 250 grid for various values of �: (a) −0.5, (b) 0, (c) 1.0 and (d) 2.5. Note
that the individual fingers touch the cos θ axis according to (55).

σ ≡ 1

|a|2
d
(

1
2 |a|2)
dt

= −γ

4
[(1 − cos θ)2 sin(2(ξ+ + φ)) − (1 + cos θ)2 sin(2(ξ− + φ))

− 2(1 − cos2 θ) sin(2t)] +
2γ (ϒ0 − 1)

ϒ0
sin2 θ sin(2t) (58)

where ξ± = ξ(t)±t . Upon averaging over a period of a1, this quantity will vanish except when
ξ± = 0, corresponding to cos θ = ∓ϒ0/2(1 + �). Compare this with (55). The maximum
values for σ will occur at φ = ∓π/4 for ξ± = 0, respectively, with growth rate

σmax = (2 + ϒ0)
2

16
× (2 + ϒ0 + 2�)2

(2 + ϒ0)2(1 + �)2
γ + O(γ 2) (59)

valid for ϒ0 � 2 and � not satisfying (56). Thus, we see that the maximum growth rate
increases as a function of α1 and α2 due to the ϒ0 dependence of the critical stability point up
to a maximum of σ = γ , after which a set of stable solutions emerges in a band of nonzero
eccentricities; see figure 1

For nonzero values of γ , we must investigate the system numerically. We use the variable
coefficient ordinary differential equation solver DVODE [30]. The level surface of the growth
rate for fixed α1 = 0 is seen in figures 2 and 3 shows the growth rate surface maximized over
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Figure 2. Surface of σ = 0.01 for Eω = 0, α1 = 0, β = √
2,� = 0, and various α2.

Figure (a) shows the neutral surface for 0 � α2 � 0.25 and is an expansion of the boxed region
in (b). For α2 = 0, the critical stability point occurs at θ = π/3, which agrees with the classical
NS results. The critical stability point shifts towards cos θ = 1 as α2 increases according to
cos θ = (1 + α2β

4)/2. As α2β
4 exceeds unity, a stable band of rotating flows with nonzero

eccentricities appears. The corresponding surfaces for α2 = 0 and various α1 are qualitatively the
same, albeit as a function of α1β

2; see [21].

Figure 3. Growth rate surface σ maximized over the cos θ, γ plane as a function of α1 and α2
for Eω = 0, β = 1, (a) � = 0 and (b) � = 2.5. In (a), the growth rate for α1 = α2 = 0
(corresponding to the classic NS case) is 0.36. We see that the growth rate quickly increases to
unity on the line α1β

2 + α2β
4 = 1 + 2� and then slowly decays. Not shown is that σ → 0 as

α1, α2 → ∞.

the γ, cos θ plane as a function of α1, α2. Numerical experiments show that σmax has the value
associated with the NS equations for α1 = α2 = 0. As the parameters α1,2 increase, σmax

increases to a value of unity on the line α1β
2 + α2β

4 = 1 + 2�, and then decreases slowly to
zero as α1,2 → ∞. This threshold line corresponds to the maximal rate of change of σmax in
(59) with respect to γ ; see figure 3.

4.2. Viscous results for gradient fluids

The solutions to (49) must be simulated numerically for Eω �= 0. An interesting feature of
this equation is that, unlike the NS equations, a change of variables will not remove viscosity
from the problem. However, the qualitative results for NS hold true here. Viscosity stabilizes
the flow by lowering the maximum growth rate and introducing a stable band of eccentricities.
This stabilization is slower than its NS counterpart, that is, the dissipation in (34) is of the
form ν�u, not ν�v; see figures 4 and 5.
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Figure 4. Surface of σ = 0.01 for α2 = 0, β = 1,� = 0, as functions of α1 for (a) Eω = 0.1,
(b) Eω = 0.5 and (c) Eω = 1.0, Eω = νβ2/|ω|. Again, the corresponding surfaces for α1 = 0
and various α2 are qualitatively the same. Namely, the unstable region shrinks as viscosity in Eω

increases.

Figure 5. Surface of σ = 0.01 for � = 0, ν/|ω| = 1 as a function of the wavenumber β for
(a) α2 = 0, α1 = 1 and (b) α1 = 0, α2 = 1. For β  1, the flow is inviscid. As β increases, the
leading order term in an asymptotic expansion of (44) will be −Eω|k|2a. Since Eω = νβ2/|ω|,
viscous dissipation quickly takes over.

5. Conclusions

The presence of nonlinear elasticity was seen to have profound effects on the properties of
elliptic instability. It can affect the growth rates, as well as the shapes and sizes of the unstable
parameter regimes. One of the most profound effects is the thickening of the resonance
domains (fingers, or Arnold tongues) in figure 1. These resonance domains of instability were
predicted for the NS elliptic instability. However, in the NS case, they are infinitesimally thin.

The second gradient fluid constituitive relation and the LANS-α turbulence model both
introduce higher derivatives in the momentum density. We found that the highest derivative
dominates and produces qualitatively similar effects on the neutral stability surfaces. That is,
figure 2 shows a similar behaviour of the neutral surface as a function of α2β

4 as found for the
LANS-α model as a function of α1β

2, in the present notation.
As seen in figure 3, first and second gradient fluids increase the Lyapunov growth rates

associated with elliptic instability for α1β
2 + α2β

4 < 1 + 2� and then decrease the growth
rates for parameter values beyond this threshold. When α2 = 0, this relation recovers the
result for LANS-α. Thus, the higher order smoothing due to α2 �= 0 comes into play to reduce
the maximum growth rate for short waves.
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Viscosity has the expected effects on the domain of elliptic instability, as seen in figures 4
and 5. However, these effects depend sensitively on the value of α1 and α2. Figure 5 shows
how the effects of nonlinear visco elasticity depend on the values of α1 and α2 as a function of
the wave number β. The α2 term corresponds to the β4 dependence, which comes into play
very rapidly in its effect on the neutral surface for elliptic instability in figure 5(b).

Our investigation followed the approach of Fabijonas and Holm [21, 22], who studied
the corresponding mean effects of turbulence on elliptic instability for a class of turbulence
closure models. For inviscid fluids, the effects of elliptic instability seen in gradient fluids
and in the turbulence closure models are qualitatively similar. The inviscid first gradient
fluid corresponds to the LANS-α turbulence model, which can be viewed as the nonlinear
terms in an LES model for turbulence whose filter is the inverse of the Helmholtz operator
(1 − α1∇2) [18]. The inviscid second gradient fluid can be viewed similarly, for which the
filter is (1 − α1∇2 + α2∇4)−1, instead.

Future studies may investigate the roles of other aspects of nonlinear stress on elliptic
instability, for example, in the Rivlin–Ericksen–Green multipolar fluids analysed in [11].
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